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Curvature of Surfaces in 3-Space 
 

History of the Study of Curvature 

Curvature has ultimately had a single role throughout the history of mathematics: to illustrate the natural 

beauty of mathematics and to describe, in the best way, the mathematical aspects of nature.  The notion 

of curvature first began with the discovery and refinement of the principles of geometry by the ancient 

Greeks circa 800-600 BCE.  Curvature was originally defined as a property of the two classical Greek 

curves, the line and the circle.  It was noted that lines do not curve, and that every point on a circle 

curves the same amount.  The actual study of curvature began when Aristotle expanded upon these two 

points and declared that there are three kinds of loci: straight, circular, and mixed.  It was from this 

premise that the true study of curvature began. 

Apollonius of Perga devised methods for calculating the radius of curvature in the 3rd century BCE.  

These methods were similar to those of Huygens and Newton (discovered some 2000 years later), but 

neither Apollonius nor his contemporaries were able to expand on them since their methods of 

exhaustion proved to be too rigorous.  This helped to push the study of curvature further along as there 

was more research to be done. (Margalit, The History of Curvature, 2005) 

The next momentous advancement in the study of curvature came from Nicole Oresme in the fourteenth 

century CE.  Oresme was the first person to hint at an actual definition of curvature.  He also assumed 

that there was a specific measure of twist which he called “curvitas.”  By observing multiple curves at 

once, Oresme eventually proposed that the curvature of a circle proportional to the multiplicative inverse 

of its radius.  This would eventually provide the driving force behind the quest of finding the curvature of 

a general curve,a measurement that could be applied to any curve. (Margalit, The History of Curvature, 

2005) 

Johannes Kepler (1571-1630) made the next contribution to the notion of curvature.  While working on 

the problem of Al Hazin, (finding the image of a brilliant point when reflected off of a circle), Kepler 

arrived at the notion of using a circle to measure the general curvature of the curve at the point of 

reflection.  This approximating circle would come to be known as a curve’s "circle of curvature" at a 

point.  The radius of the circle is inversely proportional to the extent to which the curve bends at that 

point.  The circle of curvature was crucial to the development of curvature because it marked the first 

attempt to truly measure the degree of curvature, the measure of how much a curve twists. (Margalit, 

The History of Curvature, 2005) 

Rene Descartes and Pierre de Fermat were the first to express general curves in geometry as equations.  

This was a step towards the role curves would play in Calculus, but Descartes’ and Fermat’s work on the 

subject was incomplete because the analyses lacked any mention of pi.  As a result, the development 

analytic geometry was stunted for the start of the seventeenth century.  However, change came in 1673 

when a mathematician named Christiaan Huygens published the influential book Horologium 
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oscillatorium sive de motu pendulorum ad horologia aptato demonstrationes geometrica. (Margalit, The 

History of Curvature, 2005) 

In his text Huygens described two more features of a curve, its evolute 

and involute which are illustrated in Figure I (Margalit, cyccyc.gif).  The 

involute is created in a series of movements, and it is important to 

notice that at each step, the string is tangent to the evolute and 

perpendicular to the involute.  By this, Huygens would eventually 

define the radius of curvature of the involute as the distance between 

the points of contact between the involute and evolute with the string.  

This bears significance because of its relevance to what the working 

definition of curvature eventually became.  However, Huygens’ method was flawed: in order to find the 

radius of curvature, the evolute had to be provided, and as a result, the theory was useless for measuring 

arbitrary curves. (Margalit, The History of Curvature, 2005) 

Calculus was finally invented in the late 17th century.  Calculus’s ability to deal with limits and 

infinitesimal amounts helped the study of curvature.  A curve can have a different curvature at every 

point, so mathematicians needed a way to view an infinitely small section of a curve in order to measure 

its curvature at that point.  The modern method of measuring curvature is accredited to one of the co-

founders of Calculus, Sir Isaac Newton. 

To Sir Isaac Newton, a curve was an object of beauty.  Newton viewed curvature as its own classification 

of science, and therefore scrutinized its every aspect.  In his work, Methods of Series and Fluxions, 

Newton proposed to measure the curvature of any curve at a given point.  He noted that this process 

required a certain…elegance.  Newton began his process by first observing the three basic properties of 

curves:  A circle has a constant curvature which is inversely proportional to its radius; the largest circle 

that is tangent to a curve (on its concave side) at a point has the same curvature as the curve at that 

point; and the center of this circle is the "centre of curvature" of the curve at that point. (Margalit, The 

History of Curvature, 2005) 

Newton’s definition of the center of curvature was momentous because it was in his work on this subject 

that he first introduced the concept of infinitesimals, actually implementing calculus.  He stated that the 

center of curvature “is the meet of normals at indefinitely small distances from *the point in question+ on 

its either side."  It was from this that Newton would formulate his equation for the radius of curvature, 

and eventually modify that equation to be used in polar coordinates as well.  There was however a flaw 

in Newton’s equations - they yielded “undefined” solutions at points of inflection. (Margalit, The History 

of Curvature, 2005) 

From Newton’s observations and from the properties of calculus, it is known that curves behave like 

straight lines near a point of inflection.  From this, Newton theorized that since the radius of curvature of 

a straight line is infinite, the radius of curvature at points of inflection is also infinite.  From this Newton 

calculated the formulae for the radii of curvature of several curves, including the cycloid and the 

Archimedean spiral.  These calculations were notable in that they were performed analytically through 

Figure I 
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the use of calculus.  Until Newton co-invented calculus, the radius of curvature, and curvature itself was 

calculated by extraneous geometrical methods.  It was Newton who first calculated a value for curvature 

without using geometry. 

The next mathematician to have historic effect on curvature was Leonhard Euler, who made 

revolutionary statements about curvature in 1774. Euler devised a new way of defining curvature.  He 

defined curvature as  , which is the change in angle of the tangent divided by the change in arc length.  

This only applied to an infinitely small location on the curve.  Euler was the mathematician responsible 

for the important theorem that the magnitude of curvature equals the magnitude of the second 

derivative of a parameterization of the curve at a specific point. (Margalit, The History of Curvature, 

2005) 

Generally speaking, there are two important types of curvature: extrinsic curvature and intrinsic 

curvature.  The definition of curvature has been modified throughout history and it changes minutely 

depending upon how many dimensions are being observed as well as on what specific curve is involved.   

Curvature, defined in 3-space, is the measure of how much the curve “bends” at a single point.  This can 

be thought of as the rate of change of the angle formed between the tangent and the curve as the 

tangent is drawn along the curve.  The discussion thus far has concerned extrinsic curvature in two- and 

three-space throughout history.  This curvature describes a space curve (defined as a curve which may 

pass through any region of three-dimensional space) entirely in terms of its torsion (the rate of change of 

the osculating plane) and the initial starting point and direction. (Weisstein, Curvature) 

Exploration of intrinsic curvature developed after the study of the extrinsic.  The main types of curvature 

that emerged from this were mean curvature and Gaussian curvature. Mean curvature was the relevant 

to applications of the time and was, as a result, the most studied.  Gauss was the first to recognize the 

importance of the Gaussian curvature.  Gauss said that because Gaussian curvature is "intrinsic," it is 

detectable to hypothetical two-dimensional "inhabitants" of the surface.  The importance of Gaussian 

curvature derives from an inhabitant’s control over the surface area of spheres around himself. 

(Weisstein, Curvature) 

Gaussian curvature is regarded as an intrinsic property of space that is independent of the coordinate 

system that is used to describe that space.  If there exists a surface in three-space, at a specific point, 

there is a plane tangent to that surface.  A generalization of curvature known as normal section curvature 

can be computed for all directions of that tangent plane.  From calculating all the directions, a maximum 

and a minimum value are obtained.  The Gaussian curvature is the product of those values.  The Gaussian 

curvature signifies a peak, a valley, or a saddle point, depending on the sign.  If positive, a valley or peak, 

if negative, a saddle point, and if the Gaussian curvature is zero, than the surface is flat in at least one 

direction. (Weisstein, Curvature) 

A modern day application of curvature can be found in the study of modern physics. In relativity, one 

concept of discussion concerns how different elements of the universe affect light.  The application of 

curvature is best described by John Wheeler, an American theoretical physicist: “Space tells matter how 

to move and matter tells space how to curve.” For this application, it is best to visualize part of the 
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universe as an infinitesimally thin bed sheet.  In the study of the quantized theory of light, it is learned 

that mass creates a localized distortion in the space time continuum.  To expand this to the bed-sheet 

metaphor, consider stretching the sheet (representing space-time) in every direction and then placing a 

bowling ball on top of it.  The sheet sags down at the point where the bowling ball rests.  This is how 

mass distorts space-time.   

When mass distorts space time, light traveling in that vicinity is bent, meaning the path of the light is 

changed.  It is important to measure how much the light is bending, and this is where curvature comes 

into play.  The light bends because the mass creates a gravitational force.  When light is affected this way 

by gravity its frequency shifts towards the red end of the spectrum, a phenomenon called gravitational 

red-shift.  The size of the mass determines the extent to which space-time is distorted; the larger the 

mass, the more space time is curved, as illustrated in Figure II (Carroll & Ostlie, 1996).  Thus, the path of 

the light depends upon the amount of curvature on the path.  Therefore the curvature affects the extent 

to which the light shifts. 

 

 

 Properties of Space Curves 

Part one of this project explored space curves: their vector equations of points, normals, tangents, and 

binormals, and their qualities of torsion ( ) and curvature ( ).  A summary of these follows. 

Where describes the position of a point on a curve parameterized in terms of arc length s and   

, , , and , , and  are the unit tangent vector, the principle normal vector, and the 

binormal vector respectively with:   , , and , the following equations result 

(Weisstein, Curvature): 

 

 

Figure II 
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These mathematical definitions will serve as tools in building a further understanding of curvature of 

surfaces in 3-space, but, first, the concepts they describe must be further explored.  Curvature can be 

most easily visualized as being related to the radius of the osculating circle that most closely fits the curve 

at that point, as can be seen in Figure IV (User:Cepheus, 2006).  Torsion, on the other hand, can be 

imagined as the rate of rotation of the osculating plane described by the mutually orthogonal tangents, 

normals and binormals of the curve at each point.  This concept is more difficult to visualize with a static 

image, but it is illustrated in Figure IV (Schmies, 2007). 

   

  

         

Mathematically, the radius of curvature  can be given by (Seggern, 1993): 

 

Where  is the differential of the arclength along the curve path and  refers to the angle of the tangent 

with the x-axis which changes its direction over  by an angle of .  Radius of curvature can also be 

expressed in terms of the derivatives of the curve. For example, for the implicitly defined curve 

 (Seggern, 1993): 

 

 

Principal Curvature 

The tools developed to explore space curves evolve naturally into tools that can be 

used to explore curved surfaces.  The behaviors of the tangent lines from point to 

point on the curve that was so useful in describing torsion and curvature are 

comparable to the tangent planes that are so integral to exploring surfaces.  All 

tangent lines to a point on a surface will fall in the same plane: the tangent plane to 

Figure IV
Error! Bookmark not defined.

 Figure IV 

Figure V
Error! Bookmark 

not defined.
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the surface at that point.  Any curve embedded in the surface that passes through that point will have a 

tangent at that point which falls in this tangent plane.  So, if we take a normal vector perpendicular to the 

tangent plane at this point (Figure V (Alexandrov)), this normal vector at point  on surface 

 would be given by  .  A 

plane containing the unit normal, , and the tangent 

vector, , for a point on the surface intersects with 

that surface along a curve with a normal curvature, 

, shared by all curves with the same tangent vector 

at that point.  The maximum and minimum of these 

normal curvatures at a point are called the principal 

curvatures,  and , and they measure the 

maximum and minimum “bending” of the surface at 

that point.  Figure VI (Gaba, 2006) illustrates the 

principal curvatures of a saddle surface. 

The principal curvatures of a surface at a point are key components in deriving the mean (H) curvature 

and Gaussian (K) curvature for the surface. (Weisstein, Curvature)  

 

 

Mean curvature is an extrinsic quality of a curve, whereas Gaussian curvature is intrinsic.  Before further 

exploring these curvatures mathematically, a discussion of intrinsic and extrinsic curvature is in order. 

 

Intrinsic vs. Extrinsic Curvature 

As discussed earlier, the properties of curves fall into two main categories: 

intrinsic and extrinsic. The most colorful explanation of the difference 

between the two occurs within the context of the story of A. Square, a 

heretical two-dimensional square inhabiting a plane called “Flatland.”  The 

concept of “Flatland” was first explored in the work, Flatland: A Romance of 

Many Dimensions, by Edwin Abbott Abbott in 1884, but the adventures of 

A. Square (Figure VII (Rucker, 1977, p. 4)) and his interactions with A. 

Sphere and A. Polygon made such a lasting impression on the study of 

differential geometry that many other authors have utilized A. Square, his 

cohorts, and his reality to illustrate what 2-dimensional inhabitants might 

observe and conclude about the geometry of their own world. 

Figure VI 

Figure VII 
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Within the context of “Flatland,” the intrinsic qualities of the 

surface of their world could be detected by the two dimesional 

inhabitants, whereas extrinsic qualities would be detectible only 

externally to someone with a different perspective – e.g. the three 

dimensional sphere (A. Sphere) who interacts with A. Square in an 

attempt to explain to him the nature of his own reality.  In one 

instance A. Sphere tries to demonstrate his own shape by passing 

through the plane of Flatland before A. Square’s eyes.  In Figure 

VIII (Rucker, 1977, p. 5), A. Square observes him first as a dot, and 

then as a circle of increasing diameter. 

Within a mathematical context, extrinsic curvature is dependent 

on the embedding of the surface in another space ( or  for 

example) whereas intrinsic curvature exists independent of this 

embedding. 

 

Fourth Dimension 

Supposing that A. Hypersphere wanted to mess around with those 

of us here in the third dimension, he might very well consider 

robbing a bank.  In the same way that it would be simple for A. 

Sphere to reach into A. Square’s 2-dimensional locked safe and take his money without A. Square ever 

being the wiser until he went to make a withdrawal, so too might A. Hypersphere cause quite a bit of 

consternation by “disappearing” the treasure in Fort Knox (or a nuclear missile or two!) 

 

First Fundamental Form 

The three fundamental forms can be used to determine the metric properties of an object. The third 

fundamental form can be derived from the first and second forms.  Surfaces can be described by multiple 

properties, among them Gaussian curvature, mean curvature, line element, area element, and normal 

curvature.  Each of these is a metric property that the fundamental forms help to define mathematically.  

Gaussian and mean curvature will be discussed in more detail later on. 

If we define the length of a curve, , on a surface to be (J.J.Stoker, 1956) 

 

With  we have  

Figure VIII
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Where   ,   , . 

The First Fundamental Form refers to the quadratic on the right of the equation.  It is positive definite. 

(J.J.Stoker, 1956) 

 

Second Fundamental Form 

The Second Fundamental Form is 

another extrinsic property of surface. It 

depends on an embedding into 

Euclidean N-space of N≥3.  It is defined 

as the square of the Euclidean distance 

from a point close to the one being 

considered to the tangent plane. Error! 

Reference source not found.Figure IX 

(J.J.Stoker, 1956) illustrates these 

values.   It measures the deviation of 

neighboring points on the surface from 

the tangents plane at a specific point 

and has the form (J.J.Stoker, 1956): 

 

Where 

 

 

 

Mean Curvature 

As stated earlier, mean curvature is an extrinsic property of a surface derived from the principal 

curvatures of the surface.  Mean curvature can also be stated in terms of the coefficients of the first and 

second fundamental forms (Weisstein, Mean Curvature): 

 

Gaussian Curvature 

Figure IX 
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As remarked earlier, Gaussian Curvature was truly innovative because of Carl Friedrich Gauss’s discovery 

that that it could be understood intrinsically to the surface, which he stated in his Theorem Egregium. 

One informal example of Gaussian Curvature in action would be if the 

inhabitant of a surface traced out a circle, and found the circumference of 

that circle to be less than .  The inhabitants could draw the conclusion 

from this that their surface was positively curved – due to this 

measurement’s deviation from what would be expected on a flat surface.  

The sign of Gaussian Curvature at a point informs the nature of the surface 

at that point.  In Figure X (Jhausauer, 2007) the Gaussian curvatures of the 

shapes from left to right are negative, zero, and positive.  On a regular 

patch, Gaussian curvature in terms of the coefficients of the first and second fundamental forms can be 

defined as (Weisstein, Gaussian Curvature): 

 

A  Monge Patch Application 

A Monge patch is nothing more than a local surface with very specific properties. 

When examining a surface in a Monge patch, the calculations of the mean and Gaussian curvature are in 

a more accessible form.  A Monge patch is a local surface where  of the form 

, where U is an open set in  and h is a function that is differentiable in .  By applying 

the Monge patch to the first fundamental form, the coefficients are now given by (Weisstein, Monge 

Patch): 

 

 

 

Similarly, applying the Monge patch to the second fundamental form, the coefficients become the 

following (Weisstein, Monge Patch): 

 

 

 

Now the mean (H) curvature and Gaussian (K) curvature for a Monge patch can be defined to be 

Figure X 
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Total Curvature 

According to Gauss’ Theorem Egregium, the total curvature K at any point P on a surface depends only on 

the values of E, F, and G at P and their derivatives from the first and second fundamental forms. 

(University of Waterloo, 1996) 

 

Original Examples of Curvature 

A Function f of x and y 

I. Let  

     

      

   

      

     

Therefore, 
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II. Let  

    

     

   

     

    

Therefore, 
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